PhD, Virginia Polytechnic Institute And State University (Virginia Tech)
(2010)
Department:
Biomedical Informatics
Professional Titles
Associate Professor
Research Interests
My research group develops computational approaches that take advantage of massive public data collections to build predictive and interpretable models of genes, molecular networks, and tissue mechanisms that underlie the heterogeneity of complex diseases. In addition to biomedical data science and machine learning, I am passionate about open science, research training, and creating diverse and inclusive learning environments
Publications
Palande S, Kaste JAM, Roberts MD, Segura Abá K, Claucherty C, Dacon J, Doko R, Jayakody TB, Jeffery HR, Kelly N, Manousidaki A, Parks HM, Roggenkamp EM, Schumacher AM, Yang J, Percival S, Pardo J, Husbands AY, Krishnan A, Montgomery BL, Munch E, Thompson AM, Rougon-Cardoso A, Chitwood DH, VanBuren R. Topological data analysis reveals a core gene expression backbone that defines form and function across flowering plants. PLoS Biol. 2023 Dec;21(12):e3002397. PubMed PMID: 38051702
Mancuso CA, Liu R, Krishnan A. PyGenePlexus: a Python package for gene discovery using network-based machine learning. Bioinformatics. 2023 Feb 3;39(2). PubMed PMID: 36721325
Liu R, Hirn M, Krishnan A. Accurately modeling biased random walks on weighted networks using node2vec. Bioinformatics. 2023 Jan 1;39(1). PubMed PMID: 36688699
Liu R, Krishnan A. Open Biomedical Network Benchmark, a Python toolkit for benchmarking datasets with biomedical networks. Proceedings of Machine Learning Research 2023.
Mancuso CA, Johnson KA, Liu R, Krishnan A. Joint representation of gene networks from multiple species improves gene classification. bioRxiv 2023.
Johnson KA, Krishnan A. Leveraging public transcriptomes to delineate sex- and age-associated gene signatures and pan-body processes. bioRxiv 2023.
Palande S, …, Husbands AY, Krishnan A, Percival S, Munch E, VanBuren R, Chitwood DH, Rougon-Cardoso A. A data-driven evaluation of Arabidopsis-centric research and the model species concept. bioRxiv 2023.
Zitnik M, Li MM, Wells A, Glass K, Gysi DM, Krishnan A, Murali TM, Radivojac P, Roy S, …, Milenkovic T. Current and future directions in network biology. arXiv 2023.
Liu R, Yuan H, Johnson KA, Krishnan A. CONE: COntext-specific Network Embedding via Contextualized Graph Attention. bioRxiv 2023.
Mancuso CA, Bills PS, Krum D, Newsted J, Liu R, Krishnan A. GenePlexus: a web-server for gene discovery using network-based machine learning. Nucleic Acids Res. 2022 May 17. [Epub ahead of print] PubMed PMID: 35580053
Johnson KA, Krishnan A. Robust normalization and transformation techniques for constructing gene coexpression networks from RNA-seq data. Genome Biol. 2022 Jan 3;23(1):1. PubMed PMID: 34980209
Hawkins NT, Maldaver M, Yannakopoulos A, Guare LA, Krishnan A. Systematic tissue annotations of genomics samples by modeling unstructured metadata. Nat Commun. 2022 Nov 8;13(1):6736. PubMed PMID: 36347858
Hickey SL, McKim A, Mancuso CA, Krishnan A. A network-based approach for isolating the chronic inflammation gene signatures underlying complex diseases towards finding new treatment opportunities. Front Pharmacol. 2022;13:995459. PubMed PMID: 36313344
Mancuso CA, Bills PS, Krum D, Newsted J, Liu R, Krishnan A. GenePlexus: a web-server for gene discovery using network-based machine learning. Nucleic Acids Res. 2022 May 17;50(W1):W358-66. [Epub ahead of print] PubMed PMID: 35580053
Johnson KA, Krishnan A. Robust normalization and transformation techniques for constructing gene coexpression networks from RNA-seq data. Genome Biol. 2022 Jan 3;23(1):1. PubMed PMID: 34980209
S. Palande, JAM Kaste, MD Roberts, KS Abá, C Claucherty, J Dacon, R Doko, TB Jayakody, HR Jeffery, N Kelly, A Manousidaki, HM Parks, EM Roggenkamp, AM Schumacher, J Yang, S Percival, J Pardo, AY Husbands, A Krishnan, BL Montgomery, E Munch, AM Thompson, A Rougon-Cardoso, DH Chitwood, R VanBuren. The topological shape of gene expression across the evolution of flowering plants. bioRxiv 2022.09.07.506951; doi: https://doi.org/10.1101/2022.09.07.506951
R Liu, M Hirn, AKrishnan. Accurately modeling biased random walks on weighted networks using node2vec+. bioRxiv 2022.08.14.503926; doi: https://doi.org/10.1101/2022.08.14.503926
CA Mancuso, R Liu, A Krishnan. PyGenePlexus: A Python package for gene discovery using network-based machine learning. bioRxiv 2022.07.02.498552; doi: https://doi.org/10.1101/2022.07.02.498552
Samart K, Tuyishime P, Krishnan A, Ravi J. Reconciling multiple connectivity scores for drug repurposing. Brief Bioinform. 2021 Nov 5;22(6). PubMed PMID: 34013329
Pizzo L, Lasser M, Yusuff T, Jensen M, Ingraham P, Huber E, Singh MD, Monahan C, Iyer J, Desai I, Karthikeyan S, Gould DJ, Yennawar S, Weiner AT, Pounraja VK, Krishnan A, Rolls MM, Lowery LA, Girirajan S. Functional assessment of the "two-hit" model for neurodevelopmental defects in Drosophila and X. laevis. PLoS Genet. 2021 Apr;17(4):e1009112. PubMed PMID: 33819264
Liu R, Krishnan A. PecanPy: a fast, efficient, and parallelized Python implementation of node2vec. Bioinformatics. 2021 Mar 24. [Epub ahead of print] PubMed PMID: 33760066
Liu R, Mancuso CA, Yannakopoulos A, Johnson KA, Krishnan A. Supervised learning is an accurate method for network-based gene classification. Bioinformatics. 2020 Jun 1;36(11):3457-3465. PubMed PMID: 32129827
Mancuso CA, Canfield JL, Singla D, Krishnan A. A flexible, interpretable, and accurate approach for imputing the expression of unmeasured genes. Nucleic Acids Res. 2020 Dec 2;48(21):e125. PubMed PMID: 33074331
Lee YS, Krishnan A, Oughtred R, Rust J, Chang CS, Ryu J, Kristensen VN, Dolinski K, Theesfeld CL, Troyanskaya OG. A Computational Framework for Genome-wide Characterization of the Human Disease Landscape. Cell Syst. 2019 Feb 27;8(2):152-162.e6. PubMed PMID: 30685436
Pizzo L, Jensen M, Polyak A, Rosenfeld JA, Mannik K, Krishnan A, McCready E, Pichon O, Le Caignec C, Van Dijck A, Pope K, Voorhoeve E, Yoon J, Stankiewicz P, Cheung SW, Pazuchanics D, Huber E, Kumar V, Kember RL, Mari F, Curró A, Castiglia L, Galesi O, Avola E, Mattina T, Fichera M, Mandarà L, Vincent M, Nizon M, Mercier S, Bénéteau C, Blesson S, Martin-Coignard D, Mosca-Boidron AL, Caberg JH, Bucan M, Zeesman S, Nowaczyk MJM, Lefebvre M, Faivre L, Callier P, Skinner C, Keren B, Perrine C, Prontera P, Marle N, Renieri A, Reymond A, Kooy RF, Isidor B, Schwartz C, Romano C, Sistermans E, Amor DJ, Andrieux J, Girirajan S. Rare variants in the genetic background modulate cognitive and developmental phenotypes in individuals carrying disease-associated variants. Genet Med. 2019 Apr;21(4):816-825. PubMed PMID: 30190612
Rangan AV, McGrouther CC, Kelsoe J, Schork N, Stahl E, Zhu Q, Krishnan A, Yao V, Troyanskaya O, Bilaloglu S, Raghavan P, Bergen S, Jureus A, Landen M. A loop-counting method for covariate-corrected low-rank biclustering of gene-expression and genome-wide association study data. PLoS Comput Biol. 2018 May;14(5):e1006105. PubMed PMID: 29758032
Wong AK, Krishnan A, Troyanskaya OG. GIANT 2.0: genome-scale integrated analysis of gene networks in tissues. Nucleic Acids Res. 2018 Jul 2;46(W1):W65-W70. PubMed PMID: 29800226
Krishnan A, Gupta C, Ambavaram MMR, Pereira A. RECoN: Rice Environment Coexpression Network for Systems Level Analysis of Abiotic-Stress Response. Front Plant Sci. 2017;8:1640. PubMed PMID: 28979289
Krishnan A, Zhang R, Yao V, Theesfeld CL, Wong AK, Tadych A, Volfovsky N, Packer A, Lash A, Troyanskaya OG. Genome-wide prediction and functional characterization of the genetic basis of autism spectrum disorder. Nat Neurosci. 2016 Nov;19(11):1454-1462. PubMed PMID: 27479844
Chikina MD, Gerald CP, Li X, Ge Y, Pincas H, Nair VD, Wong AK, Krishnan A, Troyanskaya OG, Raymond D, Saunders-Pullman R, Bressman SB, Yue Z, Sealfon SC. Low-variance RNAs identify Parkinson's disease molecular signature in blood. Mov Disord. 2015 May;30(6):813-21. PubMed PMID: 25786808
Zhu Q, Wong AK, Krishnan A, Aure MR, Tadych A, Zhang R, Corney DC, Greene CS, Bongo LA, Kristensen VN, Charikar M, Li K, Troyanskaya OG. Targeted exploration and analysis of large cross-platform human transcriptomic compendia. Nat Methods. 2015 Mar;12(3):211-4, 3 p following 214. PubMed PMID: 25581801
Greene CS, Krishnan A, Wong AK, Ricciotti E, Zelaya RA, Himmelstein DS, Zhang R, Hartmann BM, Zaslavsky E, Sealfon SC, Chasman DI, FitzGerald GA, Dolinski K, Grosser T, Troyanskaya OG. Understanding multicellular function and disease with human tissue-specific networks. Nat Genet. 2015 Jun;47(6):569-76. PubMed PMID: 25915600
Wong AK, Krishnan A, Yao V, Tadych A, Troyanskaya OG. IMP 2.0: a multi-species functional genomics portal for integration, visualization and prediction of protein functions and networks. Nucleic Acids Res. 2015 Jul 1;43(W1):W128-33. PubMed PMID: 25969450
Goya J, Wong AK, Yao V, Krishnan A, Homilius M, Troyanskaya OG. FNTM: a server for predicting functional networks of tissues in mouse. Nucleic Acids Res. 2015 Jul 1;43(W1):W182-7. PubMed PMID: 25940632
Park CY, Krishnan A, Zhu Q, Wong AK, Lee YS, Troyanskaya OG. Tissue-aware data integration approach for the inference of pathway interactions in metazoan organisms. Bioinformatics. 2015 Apr 1;31(7):1093-101. PubMed PMID: 25431329
Ramegowda V, Basu S, Krishnan A, Pereira A. Rice GROWTH UNDER DROUGHT KINASE is required for drought tolerance and grain yield under normal and drought stress conditions. Plant Physiol. 2014 Nov;166(3):1634-45. PubMed PMID: 25209982
Poirel CL, Rahman A, Rodrigues RR, Krishnan A, Addesa JR, Murali TM. Reconciling differential gene expression data with molecular interaction networks. Bioinformatics. 2013 Mar 1;29(5):622-9. PubMed PMID: 23314326
Lee YS, Krishnan A, Zhu Q, Troyanskaya OG. Ontology-aware classification of tissue and cell-type signals in gene expression profiles across platforms and technologies. Bioinformatics. 2013 Dec 1;29(23):3036-44. PubMed PMID: 24037214
Kakumanu A, Ambavaram MM, Klumas C, Krishnan A, Batlang U, Myers E, Grene R, Pereira A. Effects of drought on gene expression in maize reproductive and leaf meristem tissue revealed by RNA-Seq. Plant Physiol. 2012 Oct;160(2):846-67. PubMed PMID: 22837360
Ambavaram MM, Krishnan A, Trijatmiko KR, Pereira A. Coordinated activation of cellulose and repression of lignin biosynthesis pathways in rice. Plant Physiol. 2011 Feb;155(2):916-31. PubMed PMID: 21205614
Mohapatra SK, Krishnan A. Microarray data analysis. Methods Mol Biol. 2011;678:27-43. PubMed PMID: 20931370
Harb A, Krishnan A, Ambavaram MM, Pereira A. Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth. Plant Physiol. 2010 Nov;154(3):1254-71. PubMed PMID: 20807999
Krishnan A, Guiderdoni E, An G, Hsing YI, Han CD, Lee MC, Yu SM, Upadhyaya N, Ramachandran S, Zhang Q, Sundaresan V, Hirochika H, Leung H, Pereira A. Mutant resources in rice for functional genomics of the grasses. Plant Physiol. 2009 Jan;149(1):165-70. PubMed PMID: 19126710
Krishnan A, Pereira A. Integrative approaches for mining transcriptional regulatory programs in Arabidopsis. Brief Funct Genomic Proteomic. 2008 Jul;7(4):264-74. PubMed PMID: 18632743
Karaba A, Dixit S, Greco R, Aharoni A, Trijatmiko KR, Marsch-Martinez N, Krishnan A, Nataraja KN, Udayakumar M, Pereira A. Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. Proc Natl Acad Sci U S A. 2007 Sep 25;104(39):15270-5. PubMed PMID: 17881564